A new approximation of the Schur complement in preconditioners for PDE-constrained optimization

نویسندگان

  • John W. Pearson
  • Andrew J. Wathen
چکیده

Saddle point systems arise widely in optimization problems with constraints. The utility of Schur complement approximation is now broadly appreciated in the context of solving such saddle point systems by iteration. In this short manuscript, we present a new Schur complement approximation for PDE constrained optimization, an important class of these problems. Block diagonal and block triangular preconditioners have previously been designed to be used to solve such problems along with minres and non-standard Conjugate Gradients respectively; with appropriate approximation blocks these can be optimal in the sense that the time required for solution scales linearly with the problem size, however small the mesh size we use. In this paper, we extend this work to designing such preconditioners for which this optimality property holds independently of both the mesh size and of the Tikhonov regularization parameter β that is used. This also leads to an effective symmetric indefinite preconditioner that exhibits mesh and β-independence. We motivate the choice of these preconditioners based on observations about approximating the Schur complement obtained from the matrix system, derive eigenvalue bounds which verify the effectiveness of the approximation, and present numerical results which show that these new preconditioners work well in practice.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regularization-Robust Preconditioners for Time-Dependent PDE-Constrained Optimization Problems

In this article, we motivate, derive and test effective preconditioners to be used with the Minres algorithm for solving a number of saddle point systems, which arise in PDE constrained optimization problems. We consider the distributed control problem involving the heat equation with two different functionals, and the Neumann boundary control problem involving Poisson’s equation and the heat e...

متن کامل

One-shot solution of a time-dependent time-periodic PDE-constrained optimization problem

In this paper we describe the efficient solution of a PDE-constrained optimization problem subject to the time-periodic heat equation. We propose a space-time formulation for which we develop a monolithic solver. We present preconditioners well suited to approximate the Schur-complement of the saddle point system associated with the first order conditions. This means that in addition to a Richa...

متن کامل

Parallel Lagrange-Newton-Krylov-Schur Methods for PDE-Constrained Optimization. Part I: The Krylov-Schur Solver

Large scale optimization of systems governed by partial differential equations (PDEs) is a frontier problem in scientific computation. The state-of-the-art for such problems is reduced quasi-Newton sequential quadratic programming (SQP) methods. These methods take full advantage of existing PDE solver technology and parallelize well. However, their algorithmic scalability is questionable; for c...

متن کامل

Fast Iterative Solution of Reaction-Diffusion Control Problems Arising from Chemical Processes

PDE-constrained optimization problems, and the development of preconditioned iterative methods for the efficient solution of the arising matrix system, is a field of numerical analysis that has recently been attracting much attention. In this paper, we analyze and develop preconditioners for matrix systems that arise from the optimal control of reaction-diffusion equations, which themselves res...

متن کامل

Preconditioning of Active-Set Newton Methods for PDE-constrained Optimal Control Problems

We address the problem of preconditioning a sequence of saddle point linear systems arising in the solution of PDE-constrained optimal control problems via active-set Newton methods, with control and (regularized) state constraints. We present two new preconditioners based on a full block matrix factorization of the Schur complement of the Jacobian matrices, where the active-set blocks are merg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Numerical Lin. Alg. with Applic.

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2012